
Bose–Einstein condensation in geometrically deformed tubes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 L463

(http://iopscience.iop.org/0305-4470/38/25/L01)

Download details:

IP Address: 171.66.16.92

The article was downloaded on 03/06/2010 at 03:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) L463–L470 doi:10.1088/0305-4470/38/25/L01

LETTER TO THE EDITOR

Bose–Einstein condensation in geometrically deformed
tubes

P Exner1,2 and V A Zagrebnov3

1 Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague, Czech Republic
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Abstract
In this letter we discuss a new physical effect: we show that the Bose–
Einstein condensate can be created in quasi-one-dimensional systems in a
purely geometrical way, namely by bending or other suitable deformation of a
tube. We demonstrate this for the perfect Bose gas as well as for the case of
mean-field particle interactions.

PACS numbers: 02.40.−k, 03.75.Nt

It is well known [1] that there is no Bose–Einstein condensate (BEC) of the continuous free
Bose gas in one dimension as well, and that the same is true in tube-shaped domains D × R

with a compact cross section D ⊂ R
2. On the other hand, there is increasing experimental

and theoretical interest [2–4] in the BEC in quasi-one-dimensional systems of trapped boson
gases, in particular with the idea of understanding the properties predicted by the Lieb–Liniger
model [5–7] and the Girardeau–Tonks gas [8–10].

In this letter we want to draw attention to a way to create BEC in a quasi-one-dimensional
perfect Bose gas (PBG) based on geometrical properties of the recipient4. Dealing with a
PBG we naturally have to describe first the one-particle spectrum. Consider first a straight
cylindrical recipient, i.e. an infinitely long tube C(Sr) of a circular cross section of radius r > 0.
The one-particle Hamiltonian is (up to a multiplicative constant) the Dirichlet Laplacian t. It
can be defined through the associated quadratic form [12] or simply, since the tube boundary
is smooth, as T ψ = −�ψ with the condition ψ(x) = 0 at the tube boundary. By separation
of variables, the spectrum of T equals

⋃∞
j=1[Ej ,∞), where

0 < E1 < E2 � E3 � · · · (1)

4 The recipient geometry will remain restricted here even in the thermodynamic limit in contrast to the recent study
of the so-called anisotropic Casimir boxes [11].

0305-4470/05/250463+08$30.00 © 2005 IOP Publishing Ltd Printed in the UK L463

http://dx.doi.org/10.1088/0305-4470/38/25/L01
mailto:exner@ujf.cas.cz
mailto:zagrebnov@cpt.univ-mrs.fr
http://stacks.iop.org/ja/38/L463


L464 Letter to the Editor

are the eigenvalues of the two-dimensional operator −(∂2
x + ∂2

y ) with the Dirichlet boundary
conditions at the edge of Sr . The lowest one is, of course, non-degenerate; for the circular
cross section we can write explicitly E1 = h̄2

2M
j 2

0,1r
−2, where j0,1 is the first zero of J0(z),

and the higher eigenvalues are similarly expressed through other Bessel function zeros. The
integral density of states corresponding to the spectrum of t is given by

N (ε) = [2
√

π�(3/2)]−1
∞∑

j=1

θ(ε − Ej)
√

ε − Ej , (2)

where θ is the Heaviside function. This gives for the PBG in the infinite tube the grand
canonical total-particle density

ρ(β,µ) =
∫ ∞

0
N (dε)

1

eβ(ε−µ) − 1
(3)

provided we have temperature β−1 � 0 and chemical potential µ < E1. Since the critical
value ρc(β) := limµ↗E1 ρ(β,µ) of the density is infinite, there is no BEC of the PBG in this
quasi-one-dimensional system.

Several possibilities are known to make the critical density finite, provoking thus a BEC,
by changing the one-particle spectrum. One is to replace the Dirichlet boundary condition by
a ‘sticky’ one, i.e. by a mixed condition with a positive outside gradient of the one-particle
wavefunction on the boundary [13] (in fact, it is sufficient to make the replacement at the ‘lids’
of a finite cylinder). One can also switch in an external local attractive potential producing
bound state(s) below the inf σ(T ) = E1, the continuum spectrum [14, 15]. A less obvious
way is a suppression of the density states at the bottom of the spectrum, leading to convergence
of the integral (3) for µ = E1, by embedding the PBG into a random external potential [16].

In this letter we are going to show that a geometrical deformation of the straight tube
such as a simple local bending, even a gentle one, may produce the BEC of the PBG with the
condensate localized in the vicinity of such a bend. We will also discuss other types of (local)
geometrical deformations creating the BEC in these quasi-one-dimensional systems as well
the conditions under which the effect could be experimentally attainable.

Our claim is based on some recent results about one-particle spectra in deformed tubes
which we will first briefly recall. Quantities referring to the deformed tubes will always be
marked by an asterisk. Consider first a local bend of the infinite cylinder C(Sr), so that the tube
axis is a smooth curve which is straight outside a compact region; we also suppose that the bent
tube C∗(Sr) does not intersect itself. Whenever the deformation is nontrivial, C∗(Sr) �= C(Sr),
it generates one or more eigenvalues [17, 18] below the continuum threshold E1.

Their number is finite and the lowest one of them is simple; the form of this discrete
spectrum is determined by the geometry of the deformed tube. Properties of such bound states
in bent tubes are well understood:

(a1) If the tube is only slightly bent there is only a bound state with energy ε∗
1 and the gap

E1 − ε∗
1 is proportional to ϕ4 with a known coefficient, where ϕ is the bending angle of

C∗, see [18].
(a2) The tube need not be straight outside a bounded region; it is sufficient that it is

asymptotically straight in the sense that the tube axis curvature decays faster than |s|−1

as |s − s0| → ∞ for a fixed s0 where s is the arclength of the tube axis.
(a3) The cross section need not be circular. In such a case, however, the shape is restricted by

the so-called Tang condition imposed on the torsion [18]. It is satisfied, in particular, if
C∗ = S∗ × [0, d], where S∗ is a bent planar strip [19, 20].

(a4) The effect is robust. It also does not require the tube C∗ to be bent smoothly; the
geometrically induced bound states exist also in sharply bent tubes [21, 22].
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Furthermore, bending is not the only way to produce geometrically a nonempty discrete
spectrum:

(b1) Another mechanism is a local change of the cross section. Protrusions and more general
deformations which enlarge the volume also give rise to an effective attractive interaction
[23].

(b2) A similar effect comes from a tube branching. A tube in the form of a right-angle cross
is known to support a single bound state [24], and numerous isolated eigenvalues arise in
a skewed scissor-shaped cross with small enough angle [25].

(b3) One more example is two parallel tubes with a window in the common boundary, where
the bound state number is given by the window length [26].

Recall also that the geometrically induced discrete spectrum is finite in asymptotically
straight ducts. In the bent-tube case, for instance, it follows from the fact that the effective
attractive potential falls off faster than |s|−2, see [18]. On the other hand, the actual form
of the spectrum depends on the tube geometry. In particular, if we deal with two or more
well-localized, identical and mutually distant perturbations the eigenvalues cluster around
those of a single deformation, with a split exponentially small w.r.t. the distance between the
perturbations. This is proved mathematically for a tube with a pair of windows [27]; however,
various examples worked out numerically [28] suggest that such behaviour is generic.

Consider thus such a geometrically induced discrete spectrum below the continuum
threshold in a deformed cylinder which consists of one or several bound states with energies
{ε∗

s < E1 : s = 1, 2, . . .} and eigenfunctions localized in the vicinity of the deformation(s);
recall that the threshold inf σ(T∗) = E1 is preserved as long as the tube remains asymptotically
straight. If one orders the bound-state energies naturally, ε∗

1 < ε∗
2 � · · · < E1, then the domain

of the allowed chemical potentials is given by the inequality µ � ε∗
1 . This implies that the

critical particle density is bounded,

ρ∗
c (β) := lim

µ↗ε∗
1

∫ ∞

E1

1

eβ(ε−µ) − 1
dN ∗(ε) < ∞; (4)

here N ∗(ε) is the integrated density of states for the deformed cylinder. This opens a way to
create the BEC.

To make this effect transparent consider first a finite segment of the deformed cylinder
C∗

L of length L. Then the corresponding one-particle Hamiltonian is the Dirichlet Laplacian
T∗(L) in L2(C∗

L) defined in the same way as above; since C∗
L is bounded it has a purely discrete

spectrum σ(T∗(L)) accumulating at infinity. Denote by PI (T∗(L)) the respective spectral
measure of an interval I ⊂ R. It allows us to write the finite-volume integrated density of
states corresponding to the operator T∗(L) as

N ∗
L(ε) := 1

|C∗
L|Tr{P(−∞,ε)(T∗(L))}, (5)

where |C∗
L| is, of course, the volume of the segment C∗

L. By (5) the total particle density
ρ∗

L(β, µ) in C∗
L acquires the form∫ ∞

−∞

dN ∗
L(ε)

eβ(ε−µ) − 1
= 1

|C∗
L|

∑
{ε∗

s (L)}

1

eβ(ε∗
s (L)−µ) − 1

+
1

|C∗
L|

∑
{ε∗

j (L)}

1

eβ(ε∗
j (L)−µ) − 1

. (6)

Here {ε∗
s (L)}s�1 and {ε∗

j (L)}j�1 are eigenvalues of the operator T∗(L) divided into two groups
with ε∗

s < ε∗
j for any s, j . The first one consists of those which converge to the eigenvalues of

the infinite-tube operator T∗ as L → ∞; recall that all of them are monotonically decreasing
with respect to L. The limit is naturally taken in such a way that the distance of the cut-
offs from the deformed part(s) tend to infinity. On the other hand, {ε∗

j (L)}j�1 are those
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eigenvalues which give in this limit the continuous spectrum of T∗. Combining this with the
above-stated properties of the one-particle spectrum we see that the first group {ε∗

s (L)}s�1 is
finite. Since |C∗

L| → ∞ as L → ∞, one gets then from (6) for the limiting density of states
ρ∗(β, µ) := limL→∞ ρ∗

L(β, µ) the relation

ρ∗(β, µ) = lim
L→∞

1

|C∗
L|

∑
{ε∗

j (L)}

1

eβ(ε∗
j (L)−µ) − 1

=
∫ ∞

E1

1

eβ(ε−µ) − 1
dN ∗(ε), (7)

provided µ � limL→∞ ε∗
1 (L) = ε∗

1 < E1, uniformly in µ, where dN ∗(ε) is the (weak) limit
of the ‘cut-off’ measure family {dN ∗

L(ε)}L. In particular, relation (7) implies

ρ∗(β, µ) < ρ∗
c (β) := ρ∗(β, ε∗

1 ) (8)

for µ < ε∗
1 in view of (4).

Now let the total particle density be ρ > ρ∗
c (β). To show that this implies the BEC, let us

analyse solutions {µL(β, ρ)}L of the implicit equation following from (6),

ρ = ρ∗
L(β, µ); (9)

it is easy to see that they always exist and are bounded by ε∗
1 (L) from above. Using (6) and

(7) one gets for ρ � ρ∗
c (β) the limiting relation

lim
L→∞

µL(β, ρ) = µ(β, ρ) � ε∗
1 . (10)

On the other hand, for ρ > ρ∗
c (β) we can rewrite equation (9) as

ρ − 1

|C∗
L|

∑
{ε∗

j (L)}

1

eβ(ε∗
j (L)−µL(β,ρ)) − 1

= 1

|C∗
L|

∑
{ε∗

s (L)}
1

eβ(ε∗
s (L)−µL(β,ρ)) − 1

. (11)

Let us now distinguish different ways in which the one-particle spectrum may behave as
L → ∞. We start with the generic one.

(i) Suppose that the bound-state energies {ε∗
s (L)}s�1 verify the following conditions

as L → ∞:

E1 − δ > ε∗
1 (L) for some δ > 0

and

ε∗
s (L) − ε∗

1 (L) � a|C∗
L|α−1, a > 0, α > 0.

This is true, in particular, for a tube with a single bend or protrusion and two cut-offs moving
away from it, where in view of the (norm-resolvent) convergence of T∗(L) to T∗ the eigenvalue
ε∗

1 (L) tends to ε∗
1 < E1 and the eigenvalue difference to a nonzero limit.

Since µL(β, ρ) < ε∗
1 (L), we can use the uniform convergence (7) to obtain the asymptotics

of the solution of equation (11) as L → ∞, namely

µL(β, ρ) = ε∗
1 (L) − 1

β(ρ−ρ∗
c (β))|C∗

L| + o
(|C∗

L|−1
)
. (12)

This means that limL→∞ µL(β, ρ) = ε∗
1 , and since |C∗

L| = O(L) as L → ∞, the
thermodynamic limit in (11) gives rise to BEC at the lowest level ε∗

1 only,

ρ − ρ∗
c (β) = lim

L→∞
1

|C∗
L|

1

eβ(ε∗
1 (L)−µL(β,ρ)) − 1

. (13)

The same is true for other tube geometries, for instance, for a tube with several well
distinguished bends or ‘bubbles’, as long as the limit L → ∞ means that cut-offs move
away in the asymptotically straight parts.
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(ii) The situation may change when the thermodynamic limit L → ∞ is more complicated
and involves a local change of the geometry as well. As a model example, consider again a
tube with a finite number n > 1 of well distinguished identical bends, but suppose now that
the distances between them increase also with increasing L. As we have recalled above, the
first n eigenvalues {ε∗

s (L)}ns=1 then cluster, being exponentially close to each other with respect
to the separation parameter L,

ε∗
s (L) − ε∗

1 (L) � Ce−aL, 1 � s � n, (14)

for some positive C, a. By (14) the asymptotics of the solution to equation (11) is again of
the form (12). This means that the limit in (11) gives rise to BEC equally fragmented into the
group of n levels {ε∗

s (L)}ns=1 which are almost degenerate being exponentially separated,

lim
L→∞

1

|C∗
L|

1

eβ(ε∗
s (L)−µL(β,ρ)) − 1

= ρ − ρ∗
c (β)

n
(15)

for 1 � s � n. This fragmentation is called a type-I generalized BEC , contrasting with the
case of the infinite fragmentation known as the type-II generalized BEC5, see [1] and [29, 30].
What is important is that this condensate is separated from the continuum spectrum by a finite
energy gap which makes it more stable than the conventional BEC, see the discussion on this
point in [14, 15].

To analyse localization properties of the geometrically induced BEC we employ the PBG
one-body reduced density matrix with the kernel ρL(β, µ; x, y) given by

|C∗
L|

∫ ∞

−∞
N ∗

L(dε)
1

eβ(ε−µ) − 1
ψ∗

ε,L(x)ψ∗
ε,L(y), (16)

where {ψ∗
ε,L} are the normalized eigenfunctions of the operator T∗(L). The diagonal part of

the matrix (16) is the local particle density, since by (6)∫
C∗

L

dx ρL(β, µ; x, x) = |C∗
L|ρL(β, µ) (17)

is the total number of particles in C∗
L. In fact, a relevant quantity for the BEC space localization

is the local particle density per unit volume ρ̃L(β, µ; x) given by∫ ∞

−∞
N ∗

L(dε)
1

eβ(ε−µ) − 1
ψ∗

ε,L(x)ψ∗
ε,L(x). (18)

Indeed, since in the limit only the eigenfunctions corresponding to the eigenfunction family
{ψ∗

s }s�1 ⊂ L2(C∗) related to the infinite-tube bound states are preserved, in contrast to all the
others which are extended, we get

ρ̃(β, µ; x) := lim
L→∞

∫ ∞

−∞
N ∗

L(dε)
1

eβ(ε−µ) − 1
ψ∗

ε,L(x)ψ∗
ε,L(x)

= (ρ − ρ∗
c (β)) ψ∗

ε1
(x)ψ∗

ε1
(x) (19)

for ρ > ρ∗
c (β) in the case (13). For the fragmented BEC (15) one gets for ρ > ρ∗

c (β) similarly

ρ̃(β, µ; x) = ρ − ρ∗
c (β)

n

n∑
s=1

|ψ∗
εs
(x)|2; (20)

it is obvious that ρ̃(β, µ; x) = 0 holds when ρ � ρ∗
c (β).

5 We do not discuss here the intermediate case, ε∗
s (L) − ε∗

1 (L) = as |C∗
L|−1−α with a > 0 and α � 0, when the

so-called type-II (α = 0) and type-III (α > 0) generalized BEC can take place [29, 30]. In these situations none of the
bound states is macroscopically occupied. This can occur with geometrically deformed tubes only for complicated
shapes which are rather mathematical constructs without a relation to a possible experiment.
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Thus in contrast to the BEC in the translation-invariant case, the L2-localized condensation
in the bounded states corresponds to an infinite accumulation of the local particle density
defined by (16). On the other hand, by (13) and (15) in combination with (19), (20), the total
density of particles condensed in the bounded states,

ρ − ρ∗
c (β) =

∫
C∗

dx ρ̃(β, µ; x), (21)

is finite.
Summarizing the above analysis, the predicted localized one-dimensional BE

condensation in the perfect Bose gas is due to bound states separated from the continuum.
One asks naturally whether this effect is stable with respect to the particle interactions. The
answer can be given in the case of a mean-field repulsive interaction, i.e. in the situation when
the two-body particle potential v has the form

v(|x − y|) = λ

|C∗
L| , λ > 0. (22)

Consider for simplicity a single bend (or protrusion) corresponding to an isolated bound state
with the energy ε∗

1 . Then by [15] and by the definition (4) we obtain that the condensate
density in the state ψ∗

ε1
is given by

ρMF
0 (β, µ) =




0 for µ � ε∗
1 + λρ∗

c (β)

µ − ε∗
1

λ
− ρ∗

c (β) for µ > ε∗
1 + λρ∗

c (β),
(23)

so the effect persists. On the other hand, in view of the remark preceding (21) the stability
of the L2-localized BE condensate is much less evident in the case of the non-mean-field
two-body interaction, see the discussion in [15] and references there; the question deserves a
separate investigation.

After this theoretical analysis let us ask about the chances of observing the described type
of the BE condensation in an experiment. We are not going to discuss technically the ways
in which the Bose gas can be confined in a geometrically deformed tube; generally we have
in mind either a modification of the existing elongated traps—see recent experiments of the
MIT group [31, 32]—or using hollow optical fibres—see, e.g., [33] and references therein—as
suggested in [34].

The important parameter is the tube radius which for both the elongated traps and hollow
fibres can be made as small as r ≈ 5 µm which determines the threshold energy by the
mentioned expression E1 = h̄2

2M
j 2

0,1r
−2, where M is the atom of the mass in question. Let us

further introduce the relative gap size by γrel := (E1 −ε∗
1 )/E1. This quantity can theoretically

reach the value of about 0.39 in a smoothly bent tube [35], but a typical value6 for a bending
angle of 90◦ and more is γrel ≈ 10−1, see [28].

Two conditions must be satisfied. First of all, the bending-induced gap γrelE1 must be
much larger than the effect of the finite length L of the recipient. The latter is characterized
by the first longitudinal eigenvalue h̄2

2M
(π/L)2. It is clear that the trap must be sufficiently

elongated to fulfil the condition, roughly speaking L/r � 20 is sufficient. This is true in both
situations mentioned above; for hollow fibres it can be even better.

More complicated is the question of thermal stability; the said gap must be larger than the
energy kBT . This determines a critical temperature above which the bending-induced BEC is
likely to be destroyed by thermal fluctuations. Using the value r ≈ 5µ m we find that

Tcrit ≈ 5.4 × 10−8 γrel

Z
, (24)

6 For other geometries this parameter can be made larger: the upper bound for crossed wires is 0.75, see [26], while
in protruded tubes γrel can be arbitrarily close to 1.
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where Z is the atomic number in question. Hence lighter nuclei are preferable; there is
one order of magnitude difference between Li7 and Ru87. With the above estimate in mind,
however, even for the light ones it is difficult to perform the measurement in the available
nanokelvin conditions. On the other hand, the effect is not too far from experimental reach;
recall for instance that squeezing the transverse size to a 1 µm radius would enhance the
critical temperature (24) by a factor of 25.

Let us finally mention one more feature of such a geometrically induced BE condensate.
The ground-state wavefunction into which the atoms of the Bose gas will condense (cf (19)) is
exponentially localized away from the bend; for examples of such wavefunctions see [28] and
the literature mentioned there. This means that, e.g., bending a tube would mean not only the
condensation but also that the more the condensate is squeezed in the bend the larger will be
the bending angle. This property distinguishes the condensate discussed here from the other
quasi-one-dimensional systems considered before.

In conclusion, we have demonstrated here a purely geometric way to achieve a stable
BEC based on local deformations of a tube-shaped recipient, and we have discussed ways in
which the effect could be experimentally observed.
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